• Добро пожаловать на компьютерный форум Tehnari.ru. Здесь разбираемся с проблемами ПК и ноутбуков: Windows, драйверы, «железо», сборка и апгрейд, софт и безопасность. Форум работает много лет, сейчас он переехал на новый движок, но старые темы и аккаунты мы постарались сохранить максимально аккуратно.

    Форум не связан с магазинами и сервисами – мы ничего не продаём и не даём «рекламу под видом совета». Отвечают обычные участники и модераторы, которые следят за порядком и качеством подсказок.

    Если вы у нас впервые, загляните на страницу о форуме и правила – там коротко описано, как задать вопрос так, чтобы быстро получить ответ. Чтобы создавать темы и писать сообщения, сначала зарегистрируйтесь, а затем войдите под своим логином.

    Не знаете, с чего начать? Создайте тему с описанием проблемы – подскажем и при необходимости перенесём её в подходящий раздел.
    Задать вопрос Новые сообщения Как правильно спросить
    Если пришли по старой ссылке со старого Tehnari.ru – вы на нужном месте, просто продолжайте обсуждение.

Приближенное решение уравнения

  • Автор темы Автор темы Fieria
  • Дата начала Дата начала

Fieria

Новые
Регистрация
16 Окт 2012
Сообщения
13
Реакции
0
Баллы
0
Приближенное решение уравнения

Помогите пожалуйста :tehnari_ru_942:найти приближенное решение уравнения x3 − 2x −13 на паскале
 
Какой именно паскаль ?:telepat:
 
С таким не работаю. А на Free (Turbo) - пожалуйста:
Код:
Const
 e=0.00001;

Var
 x,dx:real;

Function F(z:real):Real;
begin
 F:=z*z*z-z*2-13;
end;

Begin
 x:=10;
 dx:=1;
 Repeat
  repeat
   x:=x-dx;
  until F(x)<0;
  x:=x+dx;
  dx:=dx/10;
 Until dx<e;
 Writeln('x= ',x:0:5,'    F(x)= ',F(x):0:8);
 Readln
End.
 
ой спасибочки большое tehno042
 
А можно еще в этой программе вычислить значение отдельного корня пятью различными методами. При использовании метода простых итераций найти решение при разных начальных приближениях????
 
Уважаемый пользователь, попробуйте доделать самостоятельно, а если не получится скиньте сюда текст программы, и мы попытаемся исправить ваши ошибки. Нам главное, что бы вы сами понимаете что и как работает, а не просто получали готовую программу.
 
Уважаемый пользователь, попробуйте доделать самостоятельно, а если не получится скиньте сюда текст программы, и мы попытаемся исправить ваши ошибки. Нам главное, что бы вы сами понимаете что и как работает, а не просто получали готовую программу.
В принципе, согласен. Но... KidRock_07.gif. Впрочем, пяти методов не всё равно не наскрёб. В частности, пресловутого "половинного деления" там нет, потому как я эту дурь свирепо ненавижу и никогда не использую. Если надо - разберитесь и напишите сами.
Некоторые пояснения:
1. Первый способ - мой любимый вследствие простоты и удобства. Я даже не знаю, существует ли у него официальное название, так что "Decimal iterations" ("Десятичные итерации") - наименование условное. Суть: стартуя с какого-либо конца промежутка, содержащего искомый корень, движемся вдоль оси Х по направлению к другому концу с шагом Dx, причем равным 10 в степени n, где n может быть и положительным, нулевым, и отрицательным, пока функция не переменит знак. Тогда "отпрыгиваем" назад на один шаг, величину шага делим на 10 и всё повторяем. Цикл продолжается до достижения заданного значения шага. Метод устойчив и удобен тем, что каждая итерация добавляет одну значащую десятичную цифру в искомую величину.
2. В надобности аналитического решения (по формуле Кардано) не уверен. Но на всякий случай привел и такой вариант.
3. Метод Ньютона (касательных) - ну с ним всё просто. Как в учебниках да справочниках написано, так в программе и сделано.
4. Различие между методами хорд и секущих в том, что в первом случае одна из точек привязки хорд неподвижна, а вторая (по идее) смещается в направлении корня, в то время как в методе секущих фиксируется (задается) угол наклона хорд к оси Х. Оба эти метода неустойчивы: если задать слишком большой исходный промежуток, вычисление может пойти "вразнос".
Код:
Const
 e=0.00001;

Var
 x,x0,x1,dx,s:real; c:Char;

Function F(z:real):Real;
begin
 F:=z*z*z-z*2-13;
end;

Function Der(z:real):real;
begin
 Der:=z*z*3-2;
end;

Function Cardano(p,q:real):real;
Var A,B,R:real;
begin
 R:=Sqrt(p*p*p/27+q*q/4);
 A:=Exp(Ln(-q/2+R)/3);
 B:=Exp(Ln(-q/2-R)/3);
 Cardano:=A+B;
end;

Begin
 x:=10;
 dx:=1;
 Repeat
  repeat
   x:=x-dx;
  until F(x)<0;
  x:=x+dx;
  dx:=dx/10;
 Until dx<e;
 Writeln('Decimal iterations:');
 Writeln('x= ',x:0:5,'    F(x)= ',F(x):0:8);
 Writeln;

 Writeln('Cardano formula:');
 x:=Cardano(-2,-13);
 Writeln('x= ',x:0:5,'    F(x)= ',F(x):0:8);
 Writeln;

 x:=10;
 Repeat
  dx:=F(x)/Der(x);
  x:=x-dx;
 Until Abs(dx)<e;
 Writeln('Newton metod:');
 Writeln('x= ',x:0:5,'    F(x)= ',F(x):0:8);
 Writeln;

 x0:=2;
 x:=3;
 s:=(F(x)-F(x0))/(x-x0);
 Repeat
  dx:=F(x)/s;
  x:=x-dx;
  s:=(F(x)-F(x0))/(x-x0);
 Until Abs(dx)<e;
 Writeln('Chord metod:');
 Writeln('x= ',x:0:5,'    F(x)= ',F(x):0:8);
 Writeln;

 x0:=2;
 x:=3;
 s:=(F(x)-F(x0))/(x-x0);
 Repeat
  dx:=F(x)/s;
  x:=x-dx;
 Until Abs(dx)<e;
 Writeln('Secant metod:');
 Writeln('x= ',x:0:5,'    F(x)= ',F(x):0:8);
 Readln
End.
 
спасибо Vladimir_S я вам очень благодарна
 
Назад
Сверху