• Добро пожаловать на компьютерный форум Tehnari.ru. Здесь разбираемся с проблемами ПК и ноутбуков: Windows, драйверы, «железо», сборка и апгрейд, софт и безопасность. Форум работает много лет, сейчас он переехал на новый движок, но старые темы и аккаунты мы постарались сохранить максимально аккуратно.

    Форум не связан с магазинами и сервисами – мы ничего не продаём и не даём «рекламу под видом совета». Отвечают обычные участники и модераторы, которые следят за порядком и качеством подсказок.

    Если вы у нас впервые, загляните на страницу о форуме и правила – там коротко описано, как задать вопрос так, чтобы быстро получить ответ. Чтобы создавать темы и писать сообщения, сначала зарегистрируйтесь, а затем войдите под своим логином.

    Не знаете, с чего начать? Создайте тему с описанием проблемы – подскажем и при необходимости перенесём её в подходящий раздел.
    Задать вопрос Новые сообщения Как правильно спросить
    Если пришли по старой ссылке со старого Tehnari.ru – вы на нужном месте, просто продолжайте обсуждение.

Найти в правильной треугольной призме

  • Автор темы Автор темы tane
  • Дата начала Дата начала

tane

Новые
Регистрация
12 Фев 2013
Сообщения
19
Реакции
1
Баллы
0
Найти в правильной треугольной призме

площадь основы, площадь боковой поверхности, обьем. Радиус круга,вписанного в основу,равно r , а боковое ребро образует с высотой пирамиды угол В.
 
И что мешает это сделать, простейшая геометрия, карандаш и тетрадку в руки и вперёд-чертить:D Или может более конкретно сформулируете вопрос:D
 
v=1/3Sh такая формула объёма пирамиды? основание пирамиды правильный треугольник, окружность вписанная в правильный треугольник имеет центр в точке пересечения биссектрис треугольника, в правильном треугольнике это и медиана и высота. а как известно в точке пересечения медиан, медиана делится в отношении 1:2, и еще все ребра в правильной треугольной пирамиде равны между собой. вот что нам известно. поехали решим эту легкую задачку. если радиус вписанной окружности равен r, то длинна медианы состоит из r+2r. теперь посмотрим на треугольник из вершины пирамиды, ребра пирамиды и отрезка медианы 2r для этого проведем высоту пирамиды, которая попадает в центр вписанной окружности ( в точку пересечения медиан). так вот данный треугольник является прямоугольным, в котором гипотенуза равна отношению 2r/sinВ, значит ребро пирамиды равно 2r/sinB. найдем отсюда площадь боковой грани или основания ( они равны между собой, это нам дано) S∆=р*r, где р - полупериметр треугольника и равен 3r/sinB, а площадь равна 3r²/sinB. вот уже знаем площадь площади боковой поверхности и основания. отсался объём пирамиды.


p.s. устал печатать, продолжите плиз :D
 
эхх сам продолжу... рассмотрим прежний треугольник из высоты пирамиды, 2r и ребра равного 2r/sinB. высота равна произведению гипотенузы к косинусу угла В, т.е. высота=2r*cosB/sinB=2r*ctgB отсюда объем пирамиды равен=1/3*2r*ctgB*3r²/sinB упростим выражение 6r³*cosB/sin²B, вот и все. удачи в учебе
 
Может вы пришлёте фото задания?
 
Назад
Сверху