• Добро пожаловать на компьютерный форум Tehnari.ru. Здесь разбираемся с проблемами ПК и ноутбуков: Windows, драйверы, «железо», сборка и апгрейд, софт и безопасность. Форум работает много лет, сейчас он переехал на новый движок, но старые темы и аккаунты мы постарались сохранить максимально аккуратно.

    Форум не связан с магазинами и сервисами – мы ничего не продаём и не даём «рекламу под видом совета». Отвечают обычные участники и модераторы, которые следят за порядком и качеством подсказок.

    Если вы у нас впервые, загляните на страницу о форуме и правила – там коротко описано, как задать вопрос так, чтобы быстро получить ответ. Чтобы создавать темы и писать сообщения, сначала зарегистрируйтесь, а затем войдите под своим логином.

    Не знаете, с чего начать? Создайте тему с описанием проблемы – подскажем и при необходимости перенесём её в подходящий раздел.
    Задать вопрос Новые сообщения Как правильно спросить
    Если пришли по старой ссылке со старого Tehnari.ru – вы на нужном месте, просто продолжайте обсуждение.

Программирование алгоритмов с использованием функций пользователя

  • Автор темы Автор темы Ainura
  • Дата начала Дата начала

Ainura

Ученик
Регистрация
2 Июн 2011
Сообщения
4
Реакции
0
Баллы
0
Программирование алгоритмов с использованием функций пользователя

27. Дана последовательность из N целых чисел, среди которых нет двух одинаковых. Требуется вычеркнуть минимально возможное количество чисел так, чтобы оставшиеся числа шли в порядке возрастания.
10.Даны натуральные числа n,m. Найти наибольший общий делитель n и m (наименьшее общее кратное n и m) используя алгоритм Евклида.
Пусть n и m – одновременно не равные нулю целые неотрицательные числа и пусть m n. Тогда, если n = 0, то NOD (n,m) = m, и если n ≠ 0, то для чисел m, n, r, где r остаток от деления m на n, выполняется равенство NOD (m,n) = NOD (n,r). Например, NOD (15,6) = NOD (6,3) = NOD (3,0) = 3.
19.Три прямые на плоскости заданы уравнением akx+bky=ck (k=1,2,3). Если эти прямые попарно пересекаются и образуют треугольник, тогда найти его площадь.
15.Натуральное число из n цифр является числом Армстронга, если сумма его цифр, возведенных в n-ю степень, равна самому числу (как, например, 153=13+53+33 ). Получить все числа Армстронга, состоящие из двух, трех и четырех цифр.
 
Пожалуйста, помогите решить задачи,срочно очень нужно,спасибо огромное!
 
Назад
Сверху